Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Muhammad S. Khan,^a Mohammed K. Al-Suti,^a Mary F. Mahon,^b Louise Male^{b*} and Paul R. Raithby^b

^aDepartment of Chemistry, College of Science, Sultan Qaboos University, Sultanate of Oman, and ^bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England

Correspondence e-mail: chplm@bath.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C}-\text{C}) = 0.018 \text{ Å}$ R factor = 0.066 wR factor = 0.171Data-to-parameter ratio = 18.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-µ-(2,5-Dioctyl-1,4-phenylene)diethynylbis[phenylbis(triethylphosphine)platinum(II)]

The title compound, $[Pt_2(C_6H_5)_2(C_{26}H_{36})(C_6H_{15}P)_4]$, is a dinuclear Pt^{II} di-yne compound exhibiting π -conjugation along the molecular backbone. It is used as a model species for rigid-rod platinum poly-yne compounds of which it is a precursor. Such compounds are of interest due to the extended π -conjugation through the aromatic linker unit in the backbone. In this structure, the molecule lies on an inversion centre such that the asymmetric unit comprises half the formula unit.

Comment

In this paper, we report the structural characterization of the title compound, (I), which is a dinuclear platinum(II) di-yne species, $trans-[(Ph)(PEt_3)_2Pt-C = C-R-C = C-Pt(PEt_3)_2$ -(Ph)] (R = 2,5-dioctyl-1,4-benzenediyl). Such platinumcontaining species form the building blocks for rigid-rod organometallic poly-ynes of general formula trans- $[Pt(PX_3)_2 - C = C - R - C = C -]_{\infty}$ (X = tertiary phosphines and R = aromatic linker unit). Platinum(II) poly-ynes are of immense current interest due to π -electron conjugation along the backbone, donor-acceptor metal-ligand interactions and novel photophysical properties (Wittmann et al., 1994; Beljonne et al., 1996; Younus et al., 1998; Chawdhury et al., 1998, 1999; Khan, Al-Mandhary, Al-Suti, Hisahm et al., 2002; Khan, Al-Mandhary, Al-Suti, Feeder et al., 2002; Khan, Al-Mandhary, Al-Suti, Corcoran et al., 2003; Khan, Al-Suti et al., 2003; Khan, Al-Mandhary, Al-Suti, Ahrens et al., 2003). They possess interesting optoelectronic properties useful for application in light-emitting diodes and photocells (Wilson et al., 2000; Wilson, Chawdhury et al., 2001; Wilson, Dhoot et al., 2001). Precursors to these species, such as the title compound, are utilized as models in the study of the molecular and electronic properties and structure-property relationships in metal poly-ynes.

Received 11 August 2003 Accepted 27 August 2003 Online 5 September 2003

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

The title compound was synthesized by the following procedure. To a stirred solution of trans-[(PEt₃)₂(Ph)PtCl] (0.543 g, 1.0 mmol) and 2,5-dioctyl-1,4-diethynylbenzene (0.175 g, 0.50 mmol) in $CH_2Cl_2/^iPr_2NH$ (50 ml, 1:1 v/v) under nitrogen was added a catalytic amount of CuI (5 mg). The yellow solution was stirred at room temperature for 20 h., after which all volatile components were removed under reduced pressure. The residue was dissolved in CH2Cl2 and passed through a silica column by eluting with hexane/ CH_2Cl_2 (1:1, v/v). Removal of the solvents under vacuo gave the title complex as a pale-yellow solid in 80% yield (0.546 g). Further purification was accomplished by triturating the complex in methanol.

Crystal data

$[Pt_2(C_6H_5)_2(C_{26}H_{36})(C_6H_{15}P)_4]$	Z = 1
$M_r = 1365.53$	$D_x = 1.377 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.8760 (4) Å	Cell parameters from 26112
b = 13.7290(9) Å	reflections
c = 14.2320 (8) Å	$\theta = 2.9-25.0^{\circ}$
$\alpha = 81.892 \ (2)^{\circ}$	$\mu = 4.37 \text{ mm}^{-1}$
$\beta = 74.610 \ (2)^{\circ}$	T = 150 (2) K
$\gamma = 82.388 \ (2)^{\circ}$	Plate, yellow
$V = 1647.16 (16) \text{ Å}^3$	$0.32 \times 0.20 \times 0.08 \text{ mm}$
Data collection	
Bruker–Nonius KappaCCD	5684 independent reflections
diffractometer	4106 reflections with $I > 2\sigma(I)$
262 10 in and 195 10 is soons	D 0.100

 $363 1^{\circ} \varphi$ and $485 1^{\circ} \omega$ scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.291, T_{\max} = 0.705$ 26112 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.172$ S = 1.075684 reflections 309 parameters H-atom parameters constrained

 $R_{int} = 0.109$ $\theta_{\rm max} = 25.0^\circ$ $= -10 \rightarrow 10$ $k = -15 \rightarrow 16$ $l = -16 \rightarrow 16$

 $w = 1/[\sigma^2(F_o^2) + (0.1002P)^2]$ + 1.5883P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 2.29 \text{ e Å}$ $\Delta \rho_{\rm min} = -2.59 \text{ e } \text{\AA}^{-3}$

Table 1

Selec	ted ge	ometric	parame	ters (A, `)
-------	--------	---------	--------	--------	-------

C4-Pt1	2.053 (10)	C24-P1	1.823 (15)
C7-C8	1.216 (13)	C26-P2	1.811 (15)
C7-Pt1	2.011 (10)	C28-P2	1.840 (13)
C8-C9	1.451 (13)	C30-P2	1.813 (11)
C20-P1	1.836 (11)	P1-Pt1	2.284 (3)
C22-P1	1.789 (14)	P2-Pt1	2.289 (2)
C8-C7-Pt1	178.6 (8)	$C_{30} - P_2 - C_{28}$	102.6 (6)
C7-C8-C9	178.2 (10)	$C_{26} - P_{2} - P_{11}$	117.4 (5)
C22-P1-C24	102.7 (8)	C30-P2-Pt1	115.3 (4)
C22-P1-C20	105.5 (6)	C28-P2-Pt1	110.3 (5)
C24-P1-C20	104.6 (6)	C7-Pt1-C4	178.8 (4)
C22-P1-Pt1	114.7 (5)	C7-Pt1-P1	88.0 (3)
C24-P1-Pt1	112.2 (4)	C4-Pt1-P1	91.2 (3)
C20-P1-Pt1	115.8 (3)	C7-Pt1-P2	92.6 (3)
C26-P2-C30	106.3 (7)	C4-Pt1-P2	88.2 (3)
C26-P2-C28	103.3 (10)	P1-Pt1-P2	178.58 (11)
C8-C9-C10-C11 ⁱ	-179.8 (8)	C20-P1-Pt1-C7	172.7 (6)
C3-C4-Pt1-P1	-87.8(8)	C26-P2-Pt1-C7	8.2 (9)
C3-C4-Pt1-P2	93.5 (8)	C30-P2-Pt1-C7	134.7 (6)
C22-P1-Pt1-C7	-63.9(7)	C28-P2-Pt1-C7	-109.7(6)
C24-P1-Pt1-C7	52.7 (7)		

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Aromatic, methylene and methyl H atoms were constrained as riding atoms fixed to the parent atoms at distances of 0.95, 0.99 and 0.98 Å, respectively. The isotropic displacement parameters were fixed at 120% of the U_{eq} values of the relevant parent atoms in the case of aromatic and methylene H atoms. Methyl H-atom isotropic displacement parameters were similarly treated but at a ratio of 1.5 relative to the appropriate parent atom. It will be noted that the anisotropic displacement parameters on certain phosphine C atoms are somewhat elongated. Attempts to model disorder in these regions resulted in negligible improvement in convergence. The solution and refinement of the crystal structure otherwise proceeded routinely. This observation can be readily explained by the fact that the sample chosen for X-ray analysis, while being the very best available after copious recrystallization attempts, was nevertheless a very thin plate of average quality. Hence, the data set obtained was not as ideal as those routinely collected on our diffractometers. The highest peak $(2.29 \text{ e} \text{ Å}^{-3})$ and deepest hole $(-2.59 \text{ e} \text{ Å}^{-3})$ are both associated with the metal atom, being located at distances of 1.04 and 0.97 Å, respectively, from Pt1.

Data collection: COLLECT (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank Sultan Qaboos University, Oman, the EPSRC, England, and Cambridge Crystallographic Data Centre, England, for funding.

References

Beljonne, D., Wittmann, H. F., Köhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H. & Bredas, J. L. (1996). J. Chem. Phys. 105, 3868-3877.

- Beurskens, P. T., Beurskens, G., de Gelder, R., Garcia-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). *The DIRDIF99 Program System*. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Chawdhury, N., Köhler, A., Friend, R. H., Wong, W.-Y., Lewis, J., Younus, M., Raithby, P. R., Corcoran, T. C., Al-Mandhary, M. R. A. & Khan, M. S. (1999). J. Chem. Phys. 110, 4963–4970.
- Chawdhury, N., Köhler, A., Friend, R. H., Younus, M., Long, N. J., Raithby, P. R. & Lewis, J. (1998). *Macromolecules*, **31**, 722–727.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Ahrens, B., Mahon, M. F., Male, L., Raithby, P. R., Boothby, C. E. & Köhler, A. (2003). J. Chem. Soc. Dalton Trans. pp. 74–84.
- Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Corcoran, T. C., Al-Mahrooqi, Y., Attfield, J. P., Feeder, N., David, W. I. F., Shankland, K., Friend, R. H., Köhler, A., Marseglia, E. A., Tedesco, E., Tang, C. C., Raithby, P. R., Collings, J. C., Roscoe, K. P., Batsanov, A. S., Stimson, L. M. & Marder, T. B. (2003). New J. Chem. 27, 140–149.
- Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Feeder, N., Nahar, S., Köhler, A., Friend, R. H., Wilson, P. J. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 2441–2448.

- Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisahm, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358–1368.
- Khan, M. S., Al-Suti, M. K., Al-Mandhary, M. R. A., Ahrens, B., Bjernemose, J. K., Mahon, M. F., Male, L., Raithby, P. R., Friend, R. H., Köhler, A. & Wilson, J. S. (2003). J. Chem. Soc. Dalton Trans. pp. 65–73.
- Nonius. (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Wilson, J. S., Chawdhury, N., Al-Mandhary, M. R. A., Younus, M., Khan, M. S., Raithby, P. R., Köhler, A. & Friend, R. H. (2001). J. Am. Chem. Soc. 123, 9412–9417.
- Wilson, J. S., Dhoot, A. S., Seeley, A. J. A. B., Khan, M. S., Köhler, A. & Friend, R. H. (2001). *Nature (London)*, **413**, 828–831.
- Wilson, J. S., Köhler, A., Friend, R. H., Al-Suti, M. K., Al-Mandhary, M. R. A., Khan, M. S. & Raithby, P. R. (2000). J. Chem. Phys. 113, 7627–7634.
- Wittmann, H. F., Friend, R. H., Kahn, M. S. & Lewis, J. (1994). J. Chem. Phys. 101, 2693–2698.
- Younus, M., Köhler, A., Cron, S., Chawdhury, N., Al-Mandhary, M. R. A., Khan, M. S., Lewis, J., Long, N. J., Friend, R. H. & Raithby, P. R. (1998). *Angew. Chem. Int. Ed.* **37**, 3036–3039.